organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

10-Hexyl-10H-phenothiazine-3carbaldehyde

Hongli Wang,* Wenyuan Xu, Bin Zhang, Wenjing Xiao and Hong Wu

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail: hlwang@mail.ccnu.edu.cn

Received 14 November 2008; accepted 20 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; R factor = 0.079; wR factor = 0.210; data-to-parameter ratio = 14.5.

The asymmetric unit of the title compound, C₁₉H₂₁NOS, contains two molecules, which form dimers via pairs of weak C-H···O hydrogen bonds.

Related literature

For the synthesis, see: Krishna et al. (1999). For general background, see: Hauck et al. (2007).

Experimental

Crystal data C₁₉H₂₁NOS

C ₁₉ H ₂₁ NOS	a = 8.4073 (9) Å
$M_r = 311.43$	b = 13.7719 (15) Å
Triclinic, $P\overline{1}$	c = 14.6485 (15) Å

$\alpha = 93.957 \ (2)^{\circ}$	
$\beta = 98.781 \ (2)^{\circ}$	
$\gamma = 90.983 \ (2)^{\circ}$	
V = 1671.5 (3) Å ³	
$\overline{Z} - 4$	

Data collection

Bruker SMART CCD	9878 measured reflections
diffractometer	5800 independent reflections
Absorption correction: multi-scan	3575 reflections with $I > 2\sigma($
(SADABS; Sheldrick, 1997)	$R_{\rm int} = 0.089$
$T_{\min} = 0.957, \ T_{\max} = 0.981$	

Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^{-1}$

 $0.23 \times 0.20 \times 0.10$ mm

 $2\sigma(I)$

T = 298 (2) K

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.079 \\ wR(F^2) &= 0.210 \end{split}$$
399 parameters H-atom parameters constrained S = 0.96 $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.27$ e Å⁻³ 5800 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C28−H28···O1	0.93	2.54	3.454 (5)	168
C9−H9···O2	0.93	2.50	3.394 (5)	162

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000)'; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2847).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hauck, M., Schönhaber, J., Zucchero, A. J., Hardcastle, K. I., Müller, T. J. J. & Bunz, U. H. F. (2007). J. Org. Chem. 72, 6714-6725.

Krishna, R. M., Kurshev, V. & Kervan, L. (1999). Phys. Chem. Chem. Phys. 11, 2833-2840.

Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, o2458 [doi:10.1107/S1600536808038890]

10-Hexyl-10H-phenothiazine-3-carbaldehyde

H. Wang, W. Xu, B. Zhang, W. Xiao and H. Wu

Comment

We used the Vilsmeier reaction to obtain the title compound, (I), which is a good intermediate for several compounds (Hauck *et al.*, 2007).

The asymmetric unit of (I) contains two molecules (Fig. 1), which form dimers via pairs of weak C—H…O bonds (Table 1).

Experimental

The title material, prepared by a literature method (Krishna *et al.* 1999), was collected by filtration and recrystallized from chloroform as yellow blocks of (I).

Refinement

The H atoms were geometrically placed (C—H = 0.93-0.97Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. The hydrogen bonds are indicated by dashed lines.

10-Hexyl-10H-phenothiazine-3-carbaldehyde

Crystal data C₁₉H₂₁NOS

 $M_r = 311.43$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.4073 (9) Å b = 13.7719 (15) Å c = 14.6485 (15) Å Z = 4 $F_{000} = 664$ $D_x = 1.238 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2010 reflections $\theta = 2.5-21.1^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$

$\alpha = 93.957 \ (2)^{\circ}$
$\beta = 98.781 \ (2)^{\circ}$
γ = 90.983 (2)°
V = 1671.5 (3) Å ³

Data collection

Bruker SMART CCD diffractometer	5800 independent reflections
Radiation source: fine-focus sealed tube	3575 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.089$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)	$h = -9 \rightarrow 9$
$T_{\min} = 0.957, \ T_{\max} = 0.981$	$k = -16 \rightarrow 16$
9878 measured reflections	$l = -17 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.079$	H-atom parameters constrained
$wR(F^2) = 0.210$	$w = 1/[\sigma^2(F_o^2) + (0.0951P)^2 + 0.4339P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.96	$(\Delta/\sigma)_{\rm max} = 0.008$
5800 reflections	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
399 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

T = 298 (2) KBlock, yellow

 $0.23 \times 0.20 \times 0.10 \text{ mm}$

Primary atom site location: structure-invariant direct Extinction correction: none methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.8046 (4)	-0.0018 (3)	1.0692 (3)	0.0498 (9)

C2	0.7545 (5)	-0.0942 (3)	1.0280 (3)	0.0614 (11)
H2	0.7849	-0.1490	1.0594	0.074*
C3	0.6625 (5)	-0.1058 (3)	0.9428 (3)	0.0633 (11)
Н3	0.6285	-0.1681	0.9183	0.076*
C4	0.6185 (5)	-0.0276 (3)	0.8922 (3)	0.0575 (10)
C5	0.6693 (5)	0.0642 (3)	0.9305 (3)	0.0562 (10)
Н5	0.6431	0.1179	0.8965	0.067*
C6	0.7571 (5)	0.0781 (3)	1.0172 (3)	0.0556 (10)
C7	0.5184 (5)	-0.0421 (3)	0.8011 (3)	0.0695 (12)
H7	0.4809	-0.1052	0.7820	0.083*
C8	0.9599 (5)	0.1833 (3)	1.1502 (3)	0.0537 (10)
C9	1.0577 (5)	0.2649 (3)	1.1820 (3)	0.0638 (11)
Н9	1.0396	0.3227	1.1532	0.077*
C10	1.1795 (6)	0.2617 (3)	1.2545 (3)	0.0707 (12)
H10	1.2427	0.3170	1.2764	0.085*
C11	1.2069 (5)	0.1751 (4)	1.2945 (3)	0.0737 (12)
H11	1.2896	0.1721	1.3442	0.088*
C12	1.1154 (5)	0.0931 (3)	1.2629 (3)	0.0624 (11)
H12	1.1386	0.0352	1.2907	0.075*
C13	0.9881 (5)	0.0945 (3)	1.1901 (3)	0.0518 (9)
C14	0.8990 (5)	-0.0712 (3)	1.2169 (3)	0.0569 (10)
H14A	0.7963	-0.1065	1.2038	0.068*
H14B	0.9123	-0.0455	1.2810	0.068*
C15	1.0314 (5)	-0.1438 (3)	1.2071 (3)	0.0620 (11)
H15A	1.0262	-0.1668	1.1426	0.074*
H15B	1.1359	-0.1123	1.2279	0.074*
C16	1.0099 (5)	-0.2288 (3)	1.2645 (3)	0.0658 (11)
H16A	1.0017	-0.2033	1.3270	0.079*
H16B	0.9084	-0.2621	1.2394	0.079*
C17	1.1389 (5)	-0.3018 (3)	1.2700 (4)	0.0755 (13)
H17A	1.2404	-0.2697	1.2971	0.091*
H17B	1.1493	-0.3269	1.2077	0.091*
C18	1.1080 (7)	-0.3864 (4)	1.3264 (5)	0.112 (2)
H18A	1.0881	-0.3594	1.3864	0.134*
H18B	1.0090	-0.4194	1.2963	0.134*
C19	1.2236 (9)	-0.4567 (5)	1.3419 (6)	0.152 (3)
H19A	1.2557	-0.4793	1.2842	0.229*
H19B	1.1795	-0.5104	1.3693	0.229*
H19C	1.3155	-0.4291	1.3831	0.229*
C20	0.7245 (5)	0.5290 (3)	0.9780 (3)	0.0549 (10)
C21	0.6665 (5)	0.4380 (3)	0.9407 (3)	0.0553 (10)
H21	0.7115	0.3831	0.9666	0.066*
C22	0.5447 (4)	0.4260 (3)	0.8668 (3)	0.0509 (9)
C23	0.4783 (4)	0.5078 (3)	0.8231 (3)	0.0511 (9)
C24	0.5365 (5)	0.5994 (3)	0.8624 (3)	0.0593 (10)
H24	0.4936	0.6550	0.8368	0.071*
C25	0.6555 (5)	0.6090 (3)	0.9380 (3)	0.0617 (11)
H25	0.6906	0.6710	0.9629	0.074*
C26	0.8506 (6)	0.5412 (3)	1.0586 (3)	0.0705 (12)

H26	0.8861	0.6044	1.0792	0.085*
C27	0.3997 (4)	0.3210 (3)	0.7143 (3)	0.0537 (9)
C28	0.3913 (5)	0.2390 (3)	0.6537 (3)	0.0658 (11)
H28	0.4292	0.1805	0.6754	0.079*
C29	0.3283 (6)	0.2428 (4)	0.5627 (3)	0.0823 (14)
H29	0.3215	0.1872	0.5225	0.099*
C30	0.2749 (6)	0.3302 (4)	0.5313 (3)	0.0829 (14)
H30	0.2294	0.3329	0.4695	0.099*
C31	0.2877 (5)	0.4140 (3)	0.5896 (3)	0.0708 (12)
H31	0.2549	0.4728	0.5664	0.085*
C32	0.3497 (4)	0.4110 (3)	0.6834 (3)	0.0548 (10)
C33	0.2671 (5)	0.5804 (3)	0.7159 (3)	0.0574 (10)
H33A	0.2457	0.6174	0.7713	0.069*
H33B	0.1641	0.5570	0.6817	0.069*
C34	0.3427 (5)	0.6498 (3)	0.6567 (3)	0.0663 (11)
H34A	0.4403	0.6796	0.6921	0.080*
H34B	0.3716	0.6135	0.6028	0.080*
C35	0.2280 (5)	0.7279 (3)	0.6258 (3)	0.0703 (12)
H35A	0.1947	0.7608	0.6802	0.084*
H35B	0.1327	0.6972	0.5886	0.084*
C36	0.2949 (5)	0.8034 (3)	0.5705 (3)	0.0719 (12)
H36A	0.3906	0.8338	0.6074	0.086*
H36B	0.3271	0.7707	0.5157	0.086*
C37	0.1802 (7)	0.8810 (4)	0.5411 (4)	0.0952 (16)
H37A	0.0859	0.8509	0.5024	0.114*
H37B	0.1453	0.9125	0.5957	0.114*
C38	0.2490 (8)	0.9569 (4)	0.4890 (5)	0.130 (2)
H38A	0.3414	0.9881	0.5271	0.195*
H38B	0.1694	1.0045	0.4730	0.195*
H38C	0.2804	0.9269	0.4336	0.195*
N1	0.8901 (4)	0.0114 (2)	1.1586 (2)	0.0562 (8)
N2	0.3601 (4)	0.4957 (2)	0.7446 (2)	0.0557 (8)
01	0.4801 (4)	0.0199 (2)	0.7486 (2)	0.0933 (11)
O2	0.9125 (4)	0.4760 (2)	1.1007 (2)	0.0861 (10)
S1	0.79048 (15)	0.19795 (7)	1.06651 (8)	0.0734 (4)
S2	0.45941 (13)	0.30926 (7)	0.83359 (7)	0.0617 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.053 (2)	0.050(2)	0.048 (2)	0.0123 (17)	0.0076 (18)	0.0108 (17)
C2	0.064 (3)	0.048 (2)	0.071 (3)	0.0074 (18)	0.003 (2)	0.013 (2)
C3	0.067 (3)	0.050(2)	0.069 (3)	0.0088 (19)	-0.001 (2)	0.000 (2)
C4	0.054 (2)	0.057 (2)	0.061 (3)	0.0105 (18)	0.007 (2)	0.004 (2)
C5	0.061 (2)	0.058 (2)	0.052 (2)	0.0141 (19)	0.009 (2)	0.0121 (19)
C6	0.060 (2)	0.048 (2)	0.062 (3)	0.0103 (17)	0.013 (2)	0.0098 (19)
C7	0.061 (3)	0.073 (3)	0.071 (3)	0.009 (2)	0.002 (2)	-0.002 (2)
C8	0.061 (2)	0.051 (2)	0.051 (2)	0.0096 (18)	0.0128 (19)	0.0030 (18)

С9	0.075 (3)	0.056 (2)	0.062 (3)	0.002 (2)	0.018 (2)	0.002(2)
C10	0.073 (3)	0.074 (3)	0.061 (3)	-0.006 (2)	0.010 (2)	-0.011 (2)
C11	0.066 (3)	0.089 (3)	0.063 (3)	0.007 (2)	0.001 (2)	-0.006(3)
C12	0.070 (3)	0.072 (3)	0.045 (2)	0.009 (2)	0.005 (2)	0.006 (2)
C13	0.057 (2)	0.057 (2)	0.044 (2)	0.0081 (18)	0.0135 (18)	0.0017 (18)
C14	0.068 (3)	0.059 (2)	0.047 (2)	0.0095 (19)	0.0128 (19)	0.0161 (18)
C15	0.067 (3)	0.061 (2)	0.060 (3)	0.012 (2)	0.009 (2)	0.019 (2)
C16	0.063 (3)	0.063 (3)	0.074 (3)	0.003 (2)	0.010 (2)	0.020 (2)
C17	0.061 (3)	0.068 (3)	0.096 (4)	0.004(2)	-0.001(2)	0.020 (2)
C18	0.096 (4)	0.070 (3)	0.173 (6)	0.009(3)	0.020 (4)	0.045 (4)
C19	0.144 (6)	0.135 (5)	0.194 (8)	0.033 (5)	0.035 (6)	0.094 (5)
C20	0.061 (2)	0.055 (2)	0.051 (2)	0.0059 (18)	0.011 (2)	0.0107 (19)
C21	0.062(2)	0.051(2)	0.059(3)	0.0127 (18)	0.019(2)	0.0158 (19)
C22	0.053(2)	0.053(2)	0.050 (2)	0.0100 (17)	0.0137 (19)	0.0118 (18)
C23	0.056 (2)	0.050 (2)	0.052 (2)	0.0131 (17)	0.0175 (19)	0.0101 (18)
C24	0.076 (3)	0.046 (2)	0.057 (3)	0.0092 (19)	0.009 (2)	0.0109 (19)
C25	0.083 (3)	0.047 (2)	0.057 (3)	0.001 (2)	0.019 (2)	0.0037 (19)
C26	0.078 (3)	0.071 (3)	0.064 (3)	0.004 (2)	0.014 (2)	0.001 (2)
C27	0.054 (2)	0.055 (2)	0.053 (2)	-0.0017 (18)	0.0077 (18)	0.0091 (19)
C28	0.073 (3)	0.057 (2)	0.069 (3)	0.003 (2)	0.017 (2)	0.005 (2)
C29	0.103 (4)	0.078 (3)	0.065 (3)	0.001 (3)	0.017 (3)	-0.008 (3)
C30	0.100 (4)	0.093 (4)	0.051 (3)	0.001 (3)	0.001 (3)	-0.001 (3)
C31	0.083 (3)	0.074 (3)	0.055 (3)	0.012 (2)	0.004 (2)	0.015 (2)
C32	0.053 (2)	0.057 (2)	0.057 (3)	0.0070 (18)	0.0142 (19)	0.0111 (19)
C33	0.056 (2)	0.056 (2)	0.062 (3)	0.0153 (18)	0.0077 (19)	0.0164 (19)
C34	0.063 (3)	0.066 (3)	0.071 (3)	0.011 (2)	0.004 (2)	0.021 (2)
C35	0.075 (3)	0.073 (3)	0.066 (3)	0.019 (2)	0.012 (2)	0.023 (2)
C36	0.082 (3)	0.067 (3)	0.066 (3)	0.008 (2)	0.000 (2)	0.020 (2)
C37	0.116 (4)	0.085 (3)	0.088 (4)	0.030 (3)	0.013 (3)	0.031 (3)
C38	0.163 (7)	0.093 (4)	0.135 (6)	0.005 (4)	0.002 (5)	0.060 (4)
N1	0.067 (2)	0.0476 (18)	0.055 (2)	0.0072 (15)	0.0071 (17)	0.0155 (15)
N2	0.062 (2)	0.0523 (18)	0.054 (2)	0.0137 (15)	0.0071 (17)	0.0119 (15)
01	0.108 (3)	0.092 (2)	0.074 (2)	0.028 (2)	-0.0122 (19)	0.0163 (19)
O2	0.086 (2)	0.096 (2)	0.073 (2)	0.0149 (18)	-0.0069 (18)	0.0213 (18)
S1	0.0895 (9)	0.0463 (6)	0.0770 (8)	0.0153 (5)	-0.0129 (6)	0.0065 (5)
S2	0.0761 (7)	0.0494 (6)	0.0601 (7)	-0.0003 (5)	0.0070 (5)	0.0159 (5)

Geometric parameters (Å, °)

C1—N1	1.393 (5)	C20—C21	1.383 (5)
C1—C2	1.400 (5)	C20—C26	1.460 (6)
C1—C6	1.411 (5)	C21—C22	1.371 (5)
C2—C3	1.362 (5)	C21—H21	0.9300
С2—Н2	0.9300	C22—C23	1.415 (5)
C3—C4	1.373 (5)	C22—S2	1.755 (4)
С3—Н3	0.9300	C23—N2	1.397 (5)
C4—C5	1.380 (5)	C23—C24	1.399 (5)
C4—C7	1.464 (6)	C24—C25	1.372 (6)
C5—C6	1.367 (5)	C24—H24	0.9300

С5—Н5	0.9300	С25H25	0.9300
C6—S1	1 756 (4)	$C_{25} = 1125$	1 204 (5)
C7	1 203 (5)	C26—H26	0.9300
С7—Н7	0.9300	C27—C28	1 381 (5)
C8 - C9	1 392 (5)	$C_{27} - C_{32}$	1 398 (5)
C8—C13	1.392(3) 1 400(5)	C27—82	1 763 (4)
C8—S1	1 756 (4)	C28—C29	1 362 (6)
C9-C10	1 362 (6)	C28—H28	0.9300
С9—Н9	0.9300	C29—C30	1 376 (6)
C10-C11	1 373 (6)	C29—H29	0.9300
C10—H10	0.9300	C_{30} $-C_{31}$	1 381 (6)
C11—C12	1 368 (6)	C30—H30	0.9300
C11—H11	0.9300	C31—C32	1 396 (6)
C12—C13	1 392 (5)	C31—H31	0.9300
C12—H12	0.9300	C32—N2	1 415 (5)
C13—N1	1 407 (5)	C33—N2	1 466 (4)
C14—N1	1 464 (4)	C33—C34	1 528 (5)
C14—C15	1 526 (5)	C33—H33A	0.9700
C14—H14A	0.9700	C33—H33B	0.9700
C14—H14B	0.9700	C34—C35	1 504 (5)
C15-C16	1 511 (5)	C34—H34A	0.9700
C15—H15A	0.9700	C34—H34B	0.9700
C15—H15B	0.9700	C35—C36	1 513 (6)
C16—C17	1 489 (5)	C35—H35A	0.9700
C16—H16A	0.9700	C35—H35B	0.9700
C16—H16B	0.9700	C36—C37	1.494 (6)
C17—C18	1.515 (6)	C36—H36A	0.9700
C17—H17A	0.9700	C36—H36B	0.9700
С17—Н17В	0.9700	C37—C38	1.494 (7)
C18—C19	1.389 (7)	С37—Н37А	0.9700
C18—H18A	0.9700	С37—Н37В	0.9700
C18—H18B	0.9700	C38—H38A	0.9600
С19—Н19А	0.9600	C38—H38B	0.9600
C19—H19B	0.9600	C38—H38C	0.9600
С19—Н19С	0.9600	S1—S2	4.4392 (15)
C20—C25	1.378 (5)		
N1 - C1 - C2	122 1 (3)	C_{21} C_{22} C_{23}	120 4 (3)
N1 - C1 - C6	122.1(3) 121 4 (3)	$C_{21} = C_{22} = C_{23}$	119 3 (3)
C_{2} C_{1} C_{6}	1164(4)	C_{23} C_{22} S_{2} S_{2}	120.1(3)
$C_{2} = C_{1} = C_{0}$	121 5 (4)	N2-C23-C24	120.1(3) 122.7(3)
C_{3} C_{2} H_{2}	119.2	$N_2 = C_{23} = C_{21}$	122.7(3) 120.6(3)
C1—C2—H2	119.2	C_{24} C_{23} C_{22}	1167(4)
$C_2 - C_3 - C_4$	121.6 (4)	$C_{25} - C_{24} - C_{23}$	121 4 (4)
С2—С3—Н3	119.2	C25—C24—H24	119.3
C4—C3—H3	119.2	C23—C24—H24	119.3
C3—C4—C5	118.0 (4)	C24—C25—C20	121.7 (4)
C3—C4—C7	120.4 (4)	C24—C25—H25	119.2
C5—C4—C7	121.5 (4)	C20—C25—H25	119.2
C6—C5—C4	121.5 (4)	O2—C26—C20	125.3 (4)
	× /		< / <

С6—С5—Н5	119.2	O2—C26—H26	117.4
С4—С5—Н5	119.2	C20—C26—H26	117.4
C5—C6—C1	120.8 (4)	C28—C27—C32	121.1 (4)
C5—C6—S1	118.0 (3)	C28—C27—S2	119.0 (3)
C1—C6—S1	120.8 (3)	C32—C27—S2	119.7 (3)
O1—C7—C4	126.3 (4)	C29—C28—C27	120.8 (4)
O1—C7—H7	116.9	C29—C28—H28	119.6
С4—С7—Н7	116.9	С27—С28—Н28	119.6
C9—C8—C13	120.5 (4)	C28—C29—C30	119.1 (4)
C9—C8—S1	118.0 (3)	С28—С29—Н29	120.5
C13—C8—S1	121.2 (3)	С30—С29—Н29	120.5
C10-C9-C8	121.2 (4)	C29—C30—C31	121.2 (5)
С10—С9—Н9	119.4	С29—С30—Н30	119.4
С8—С9—Н9	119.4	С31—С30—Н30	119.4
C9—C10—C11	118.5 (4)	C30—C31—C32	120.4 (4)
C9—C10—H10	120.7	С30—С31—Н31	119.8
C11—C10—H10	120.7	С32—С31—Н31	119.8
C12-C11-C10	121.4 (4)	C31—C32—C27	117.4 (4)
C12—C11—H11	119.3	C31—C32—N2	121.1 (3)
C10-C11-H11	119.3	C27—C32—N2	121.5 (4)
C11—C12—C13	121.4 (4)	N2—C33—C34	117.0 (3)
C11—C12—H12	119.3	N2—C33—H33A	108.0
C13—C12—H12	119.3	С34—С33—Н33А	108.0
C12—C13—C8	116.9 (4)	N2—C33—H33B	108.0
C12—C13—N1	122.0 (3)	С34—С33—Н33В	108.0
C8—C13—N1	121.1 (3)	H33A—C33—H33B	107.3
N1-C14-C15	117.3 (3)	C35—C34—C33	110.9 (3)
N1—C14—H14A	108.0	C35—C34—H34A	109.4
C15-C14-H14A	108.0	С33—С34—Н34А	109.5
N1-C14-H14B	108.0	C35—C34—H34B	109.5
C15-C14-H14B	108.0	С33—С34—Н34В	109.5
H14A—C14—H14B	107.2	H34A—C34—H34B	108.0
C16-C15-C14	109.5 (3)	C34—C35—C36	115.0 (4)
C16—C15—H15A	109.8	С34—С35—Н35А	108.5
C14—C15—H15A	109.8	С36—С35—Н35А	108.5
С16—С15—Н15В	109.8	С34—С35—Н35В	108.5
C14—C15—H15B	109.8	С36—С35—Н35В	108.5
H15A—C15—H15B	108.2	H35A—C35—H35B	107.5
C17—C16—C15	116.2 (4)	C37—C36—C35	114.4 (4)
C17—C16—H16A	108.2	С37—С36—Н36А	108.7
C15—C16—H16A	108.2	С35—С36—Н36А	108.6
C17—C16—H16B	108.2	С37—С36—Н36В	108.7
C15—C16—H16B	108.2	С35—С36—Н36В	108.7
H16A—C16—H16B	107.4	H36A—C36—H36B	107.6
C16—C17—C18	113.6 (4)	C38—C37—C36	114.0 (5)
С16—С17—Н17А	108.9	С38—С37—Н37А	108.7
C18—C17—H17A	108.9	С36—С37—Н37А	108.7
C16—C17—H17B	108.8	С38—С37—Н37В	108.7
С18—С17—Н17В	108.8	С36—С37—Н37В	108.8

H17A—C17—H17B	107.7	H37A—C37—H37B	107.6
C19—C18—C17	119.6 (5)	С37—С38—Н38А	109.5
C19—C18—H18A	107.4	С37—С38—Н38В	109.5
C17—C18—H18A	107.4	H38A—C38—H38B	109.5
C19—C18—H18B	107.5	С37—С38—Н38С	109.5
C17—C18—H18B	107.4	H38A—C38—H38C	109.5
H18A—C18—H18B	107.0	H38B—C38—H38C	109.5
С18—С19—Н19А	109.4	C1—N1—C13	122.9 (3)
C18—C19—H19B	109.5	C1—N1—C14	118.1 (3)
H19A—C19—H19B	109.5	C13—N1—C14	118.2 (3)
С18—С19—Н19С	109.5	C23—N2—C32	121.6 (3)
Н19А—С19—Н19С	109.5	C23—N2—C33	118.3 (3)
H19B—C19—H19C	109.5	C32—N2—C33	119.0 (3)
C25—C20—C21	117.6 (4)	C8—S1—C6	100.72 (18)
C25—C20—C26	120.6 (4)	C8—S1—S2	162.13 (14)
C21—C20—C26	121.8 (4)	C6—S1—S2	90.88 (14)
C22—C21—C20	122.2 (3)	C27—S2—C22	99.68 (18)
C22—C21—H21	118.9	C27—S2—S1	151.06 (13)
C20—C21—H21	118.9	C22—S2—S1	88.34 (13)
N1—C1—C2—C3	175.9 (4)	C30—C31—C32—C27	1.1 (6)
C6—C1—C2—C3	-1.2 (6)	C30—C31—C32—N2	-178.5 (4)
C1—C2—C3—C4	2.0 (6)	C28—C27—C32—C31	1.4 (6)
C2—C3—C4—C5	-0.5 (6)	S2—C27—C32—C31	-173.4 (3)
C2—C3—C4—C7	-179.6 (4)	C28—C27—C32—N2	-179.0 (4)
C3—C4—C5—C6	-1.8 (6)	S2—C27—C32—N2	6.1 (5)
C7—C4—C5—C6	177.3 (4)	N2-C33-C34-C35	175.1 (4)
C4—C5—C6—C1	2.6 (6)	C33—C34—C35—C36	177.1 (4)
C4—C5—C6—S1	-170.7 (3)	C34—C35—C36—C37	-179.4 (4)
N1—C1—C6—C5	-178.2 (3)	C35—C36—C37—C38	178.2 (5)
C2—C1—C6—C5	-1.1 (5)	C2-C1-N1-C13	157.4 (4)
N1-C1-C6-S1	-5.0 (5)	C6—C1—N1—C13	-25.7 (5)
C2—C1—C6—S1	172.1 (3)	C2-C1-N1-C14	-12.5 (5)
C3—C4—C7—O1	-175.6 (4)	C6—C1—N1—C14	164.4 (3)
C5—C4—C7—O1	5.4 (7)	C12—C13—N1—C1	-155.8 (4)
C13—C8—C9—C10	-2.3 (6)	C8—C13—N1—C1	25.3 (5)
S1—C8—C9—C10	172.0 (3)	C12—C13—N1—C14	14.1 (5)
C8—C9—C10—C11	1.6 (6)	C8—C13—N1—C14	-164.8 (3)
C9—C10—C11—C12	0.2 (7)	C15—C14—N1—C1	85.4 (4)
C10-C11-C12-C13	-1.5 (6)	C15—C14—N1—C13	-85.0 (4)
C11—C12—C13—C8	0.8 (6)	C24—C23—N2—C32	152.8 (4)
C11—C12—C13—N1	-178.2 (4)	C22—C23—N2—C32	-27.4 (5)
C9—C8—C13—C12	1.0 (5)	C24—C23—N2—C33	-14.9 (5)
S1—C8—C13—C12	-173.1 (3)	C22—C23—N2—C33	164.9 (3)
C9—C8—C13—N1	-180.0 (3)	C31—C32—N2—C23	-151.2 (4)
S1—C8—C13—N1	5.9 (5)	C27—C32—N2—C23	29.2 (5)
N1—C14—C15—C16	-173.9 (3)	C31—C32—N2—C33	16.4 (5)
C14—C15—C16—C17	-174.2 (4)	C27—C32—N2—C33	-163.1 (3)
C15—C16—C17—C18	-178.5 (4)	C34—C33—N2—C23	83.5 (4)
C16—C17—C18—C19	-176.0 (6)	C34—C33—N2—C32	-84.5 (4)

C25—C20—C21—C22	-0.1 (6)	C9—C8—S1—C6	157.7 (3)
C26—C20—C21—C22	178.0 (4)	C13—C8—S1—C6	-28.0 (3)
C20—C21—C22—C23	2.8 (6)	C9—C8—S1—S2	28.0 (6)
C20—C21—C22—S2	-171.3 (3)	C13—C8—S1—S2	-157.7 (3)
C21—C22—C23—N2	176.6 (3)	C5—C6—S1—C8	-159.1 (3)
S2-C22-C23-N2	-9.3 (5)	C1—C6—S1—C8	27.6 (4)
C21—C22—C23—C24	-3.6 (5)	C5—C6—S1—S2	7.2 (3)
S2-C22-C23-C24	170.5 (3)	C1—C6—S1—S2	-166.1 (3)
N2-C23-C24-C25	-178.3 (4)	C28—C27—S2—C22	152.0 (3)
C22—C23—C24—C25	1.9 (6)	C32—C27—S2—C22	-33.1 (3)
C23—C24—C25—C20	0.7 (6)	C28—C27—S2—S1	47.6 (5)
C21—C20—C25—C24	-1.6 (6)	C32—C27—S2—S1	-137.4 (3)
C26—C20—C25—C24	-179.8 (4)	C21—C22—S2—C27	-151.1 (3)
C25—C20—C26—O2	176.4 (4)	C23—C22—S2—C27	34.8 (3)
C21—C20—C26—O2	-1.7 (7)	C21—C22—S2—S1	0.9 (3)
C32—C27—C28—C29	-2.5 (6)	C23—C22—S2—S1	-173.2 (3)
S2-C27-C28-C29	172.4 (4)	C8—S1—S2—C27	75.2 (5)
C27—C28—C29—C30	1.0 (7)	C6—S1—S2—C27	-55.7 (3)
C28—C29—C30—C31	1.6 (8)	C8—S1—S2—C22	-32.0 (4)
C29—C30—C31—C32	-2.6 (7)	C6—S1—S2—C22	-162.86 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C28—H28…O1	0.93	2.54	3.454 (5)	168
С9—Н9…О2	0.93	2.50	3.394 (5)	162

Fig. 1

